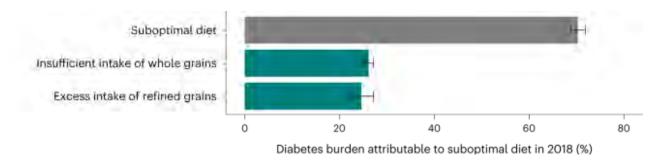
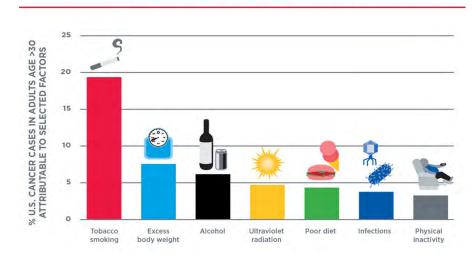
Alimentation: nutrition et contaminants

Francesca Romana MANCINI – PhD, HDR, CRCN



Quel est le rôle de l'alimentation dans le maintien de la bonne santé et la réduction du risque de maladies non transmissibles ?

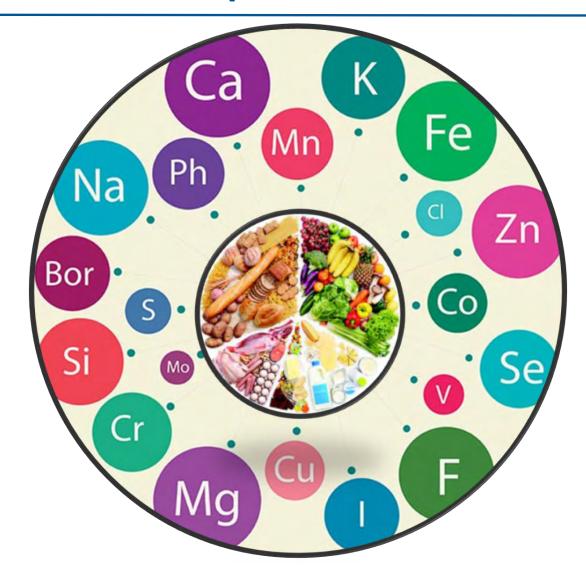


Pourcentage estimé de l'incidence du diabète de type 2 dû à un apport sous-optimal de 11 facteurs alimentaires au niveau mondial en 2018. (O'Hearn et al. 2023)

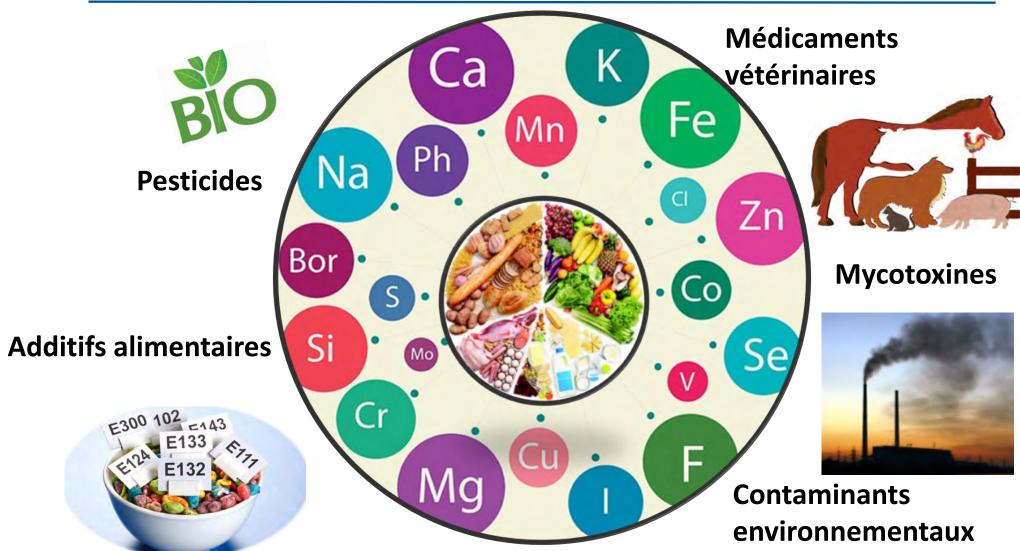
Entre 30 et 50 % des cancers peuvent actuellement être évités en évitant les facteurs de risque, tels qu'une mauvaise alimentation, et en mettant en œuvre des stratégies de prévention existantes. (AACR Cancer Progress Report. 2019)

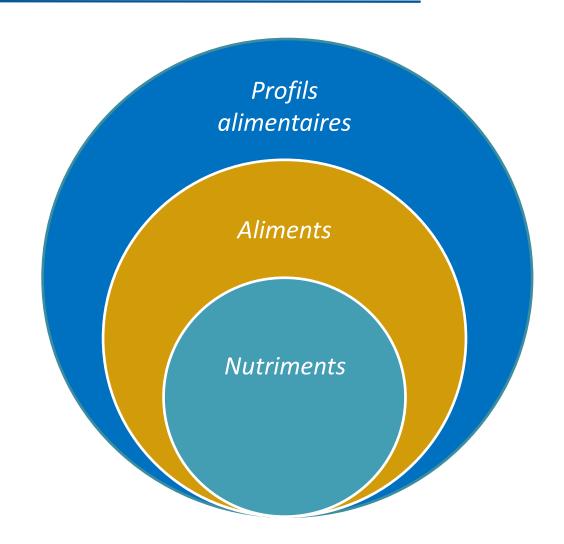
INCREASING CANCER RISK

Quel est le rôle de l'alimentation dans le maintien de la bonne santé et la réduction du risque de maladies non transmissibles ?



- Quels sont les facteurs alimentaires qui influencent des maladies spécifiques et quels sont leurs mécanismes physiopathologiques ?
- Quelles preuves scientifiques sont suffisamment solides pour élaborer des recommandations de santé publique et comment ces recommandations devraientelles être transférées à la population ?





Pour étudier l'association entre l'alimentation et la santé, trois échelles possibles :

- les nutriments
- 2. les aliments
- 3. les profils alimentaires

Pour étudier l'association entre les contaminants alimentaires et la santé, deux échelles possibles :

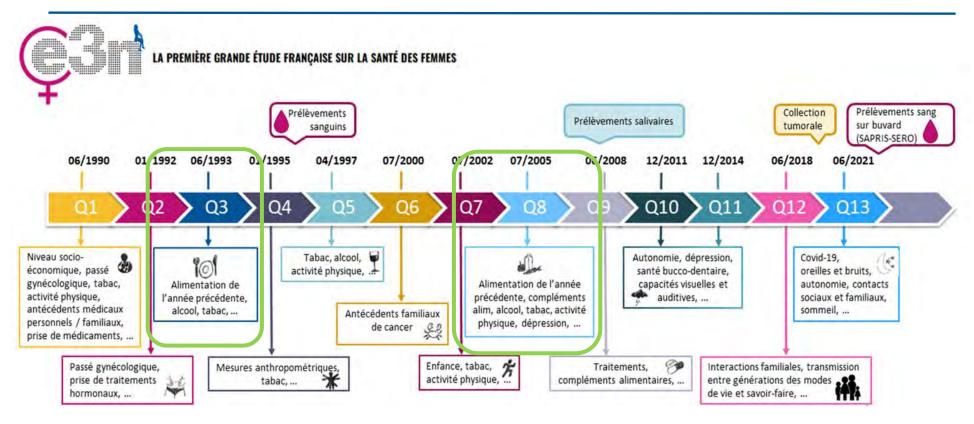
- les contaminants individuels (approche mono-polluant)
- 2. les mélanges (approche multi-polluants)

Pour étudier l'association entre l'alimentation et la santé, trois échelles possibles :

- 1. les nutriments
- les aliments
- 3. les profils alimentaires

Pour étudier l'association entre les contaminants alimentaires et la santé, deux échelles possibles :

- les contaminants individuels (approche mono-polluant)
- 2. les mélanges (approche multi-polluants)

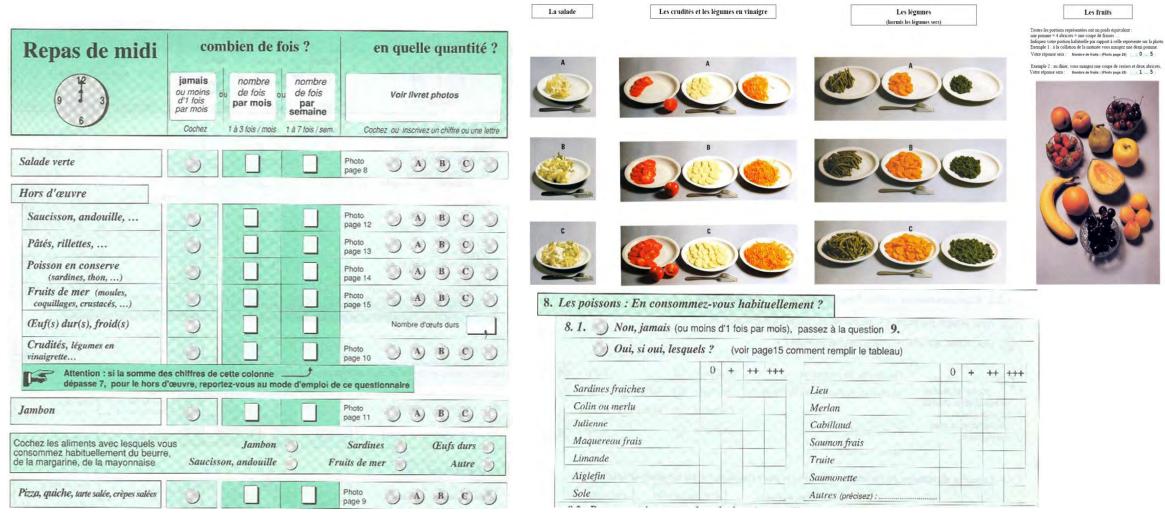

Estimations indirectes

Vs.

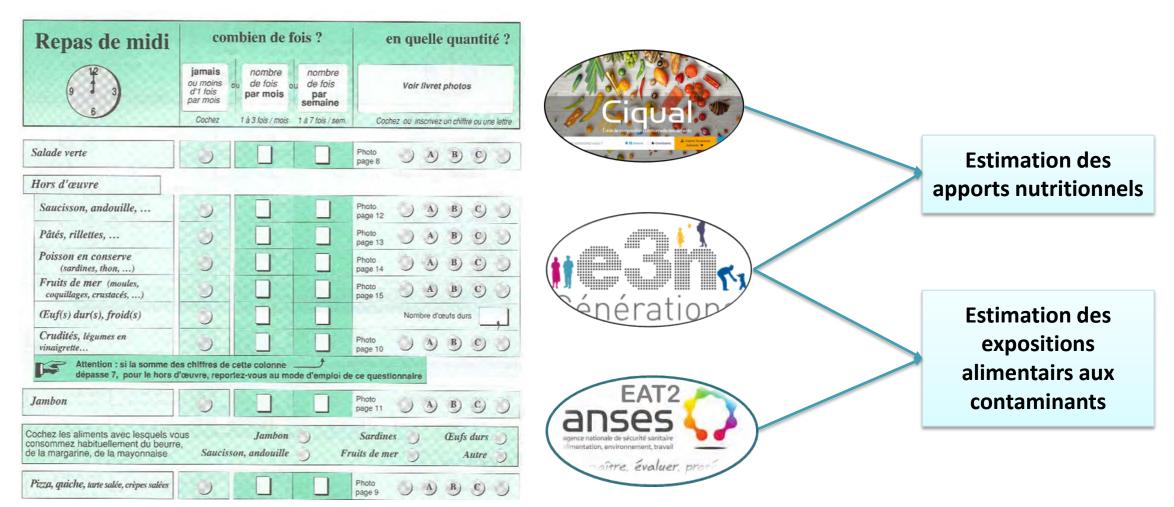
Mesures de biomarqueurs

Les données alimentaires dans E3N-Générations

Questionnaire de fréquence alimentaire semi-quantitatif concernant la consommation alimentaire des 12 mois précédents.


- Q3 rempli par 74 522 femmes E3N-G1
- Q8 rempli par 70 188 femmes E3N-G1

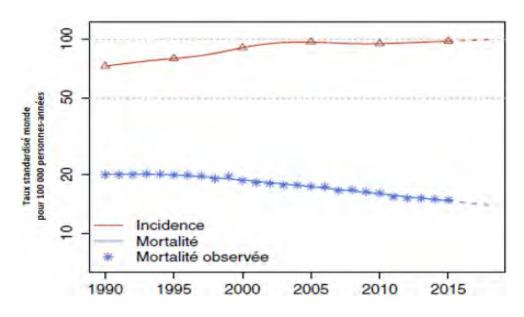
60 381 ont répondu à **Q3** <u>et</u> **Q8**


Les données alimentaires dans E3N-Générations

Les fruits

Les données alimentaires dans E3N-Générations

Francesca Romana MANCINI – PhD, HDR, CRCN


Cancer du sein

Nombre estimé de cas incidents pour les six principales localisations de cancer dans le monde en 2022

Rank	Cancer	New cases in 2020	% of all cancers
	All cancers*	18,094,716	
1	Breast	2,261,419	12.5
2	Lung	2,206,771	12.2
3	Colorectal**	1,931,590	10.7
4	Prostate	1,414,259	7.8
5	Stomach	1,089,103	6.0
6	Liver	905,677	5.0

En France:

- 58 500 nouveaux cas en 2020
- **Incidence** croissante puis stable depuis 2004
- Mortalité diminue depuis 1995

- Le cancer du sein est une maladie multifactorielle dont les déterminants sont génétiques, hormonaux et liés au mode de vie.
- L'inflammation chronique est soupçonnée comme voie sous-jacente par laquelle ces facteurs exercent leurs effets sur le cancer du sein.
- Les processus inflammatoires peuvent être prévenus par des comportements nutritionnels sains.
- Le potentiel inflammatoire du régime alimentaire peut être évalué par des indices inflammatoires de l'alimentation (IIA).

Objectif: étudier l'association entre le potentiel inflammatoire de l'alimentation et le risque de cancer du sein dans la cohorte E3N et examiner si cette association diffère selon les caractéristiques individuelles sélectionnées.

Indice d'inflammation alimentaire

Indice inflammatoire alimentaire (IIA):

- 1) Déterminer un poids inflammatoire spécifique à chacun des composants alimentaires ayant un effet pro- ou anti-inflammatoire, à partir d'une revue de la littérature.
- 2) Pondérer les apports alimentaires des participants sur le poids inflammatoire spécifique de chaque composant alimentaire,
- 3) Les additionner pour obtenir un score IIA propre à chaque sujet.

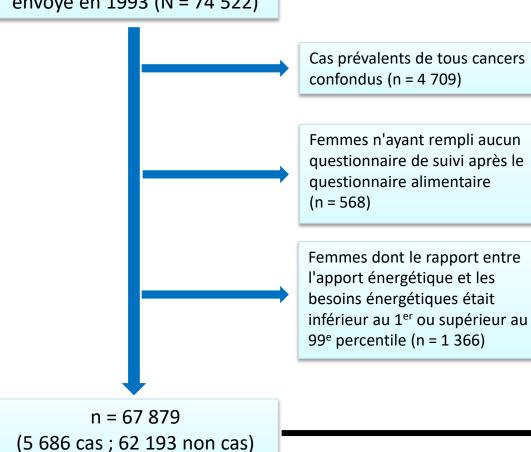
Différentes approches existent et varient en fonction des composants alimentaires retenus, des méthodes de standardisation et d'ajustement utilisées.

Méthode proposée par van Woudenbergh et al. et les poids inflammatoires proposés par Shivappa et al.

Ajustement sur l'énergie
(méthode résiduelle)

Standardisation
sur population d'étude

Pondération par le
« poids inflammatoire »

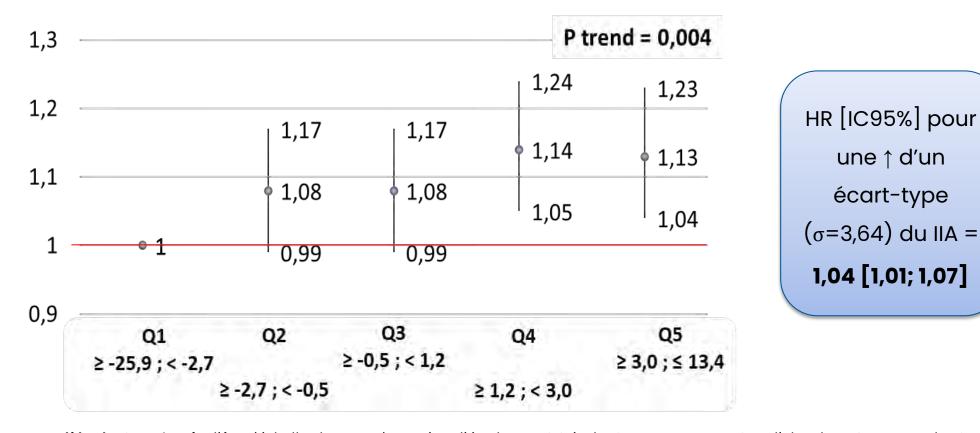

Σ scores IIA des 32 paramètres = IIA global de chaque sujet

IIA +: pro-inflammatoire
IIA -: anti-inflammatoire

Population d'étude

Participantes E3N ayant rempli le questionnaire alimentaire envoyé en 1993 (N = 74 522)

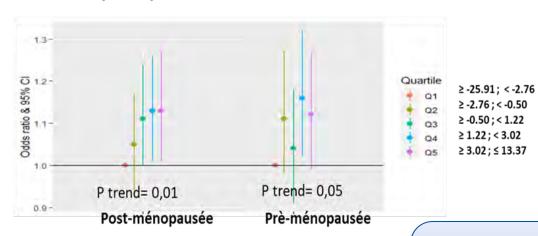
Quintiles	IIA Moyenne (Ecart type)
Q1 [≥ -25,91 ; < -2,76]	-5,41 (2,49)
Q2 [≥ -2,76 ; < -0,50]	-1,55 (0,64)
Q3 [≥ -0,50 ; < 1,22]	0,38 (0,50)
Q4 [≥ 1,22 ; < 3,02]	2,08 (0,51)
Q5[≥ 3,02 ; ≤ 13,37]	4,63 (1,38)

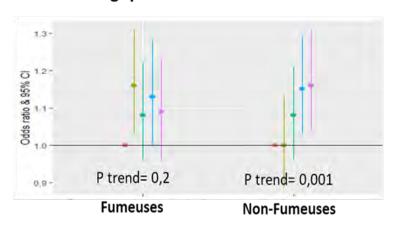

Durée moyenne du **suivi** : 10,1 ans

Âge moyen: 53,7 ans

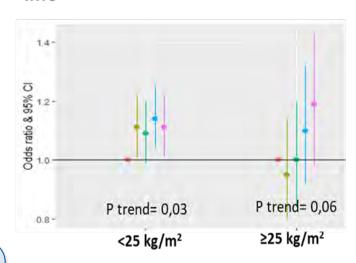
IMC moyen : 23,1 kg/m2

IIA moyen: 0,03

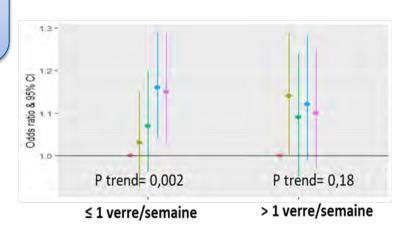



Modèle de Cox ajusté : l'âge (échelle de temps), années d'études, activité physique, consommation d'alcool, IMC, statut tabagique, antécédents familiaux de cancer du sein, antécédents personnels de maladie bénigne du sein, âge à la ménarche, parité et âge à la première grossesse à terme, allaitement, statut ménopausique et utilisation de THM, l'utilisation de contraceptifs oraux, mammographie antérieure et stratifié sur l'année de naissance (<1930, 1930-1935, 1935-1940, 1940-1945 et >1945).

Statut ménopausique



Statut tabagique



Tests
d'interaction
non significatifs

IMC

Consommation d'alcool

Conclusions:

- ✓ Dans la cohorte E3N-Générations, une alimentation pro-inflammatoire est associée à une augmentation de risque de cancer du sein et cette association semble être plus marquée chez les non-fumeuses et chez les faibles consommatrices d'alcool
- Ces résultats suggèrent qu'un régime alimentaire sain, en particulier un régime antiinflammatoire, peut aider à prévenir le risque de cancer du sein.

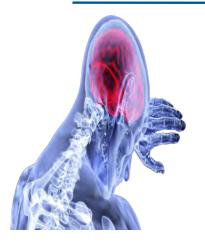
> Eur J Nutr. 2023 Aug;62(5):1977-1989. doi: 10.1007/s00394-023-03108-w. Epub 2023 Mar 4.

Dietary Inflammatory Index and risk of breast cancer: evidence from a prospective cohort of 67,879 women followed for 20 years in France

Mariem Hajji-Louati ¹, Amandine Gelot ¹, Pauline Frenoy ¹, Nasser Laouali ², Pascal Guénel ^{# 1}, Francesca Romana Mancini ^{# 3}

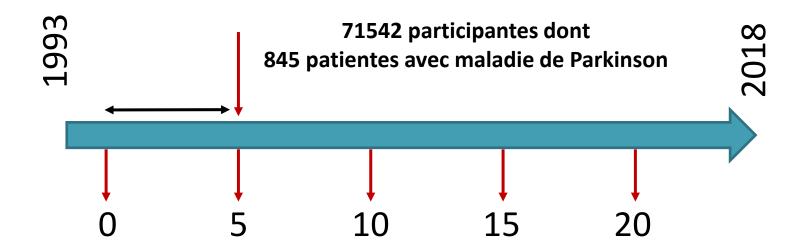
Alimentation et maladie de Parkinson

Mariem Hajji, Post-doctorante



Contexte

 La maladie de Parkinson (MP) est une maladie neurodégénérative d'origine multifactorielle, plus fréquente chez les hommes que chez les femmes.


La causalité inverse, à savoir la possibilité que des changements alimentaires soient secondaires à des symptômes comme la constipation ou la dépression avant le début la maladie, constitue un défi majeur dans l'étude des liens entre alimentation et MP.

Objectifs & méthodes

Etudier le lien entre, d'une part, la consommation de lait et d'autres produits laitiers et l'adhésion au régime méditerranéen et, d'autre part, le risque de développer la MP, tout en tenant compte du risque de causalité inverse.

Consommation de lait et autres produits laitiers et incidence de la maladie de Parkinson

L'incidence de la MP augmentait avec la consommation de lait pur (RR/85ml/jour = 1,08, IC95% = 1,02-1,14, p=0,011).

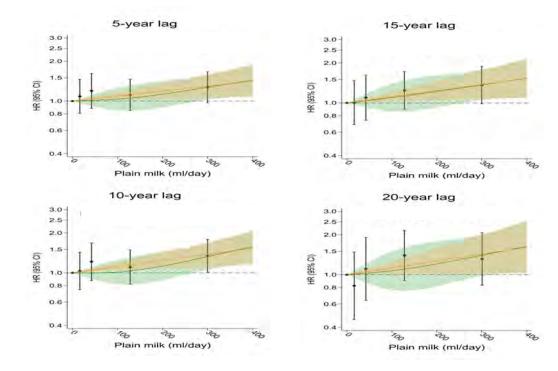


Figure 1: Consommation de lait nature et incidence de la maladie de Parkinson chez les femmes de la cohorte E3N

Consommation de lait et autres produits laitiers et incidence de la maladie de Parkinson

- L'ajout du café, thé ou chicorée au lait réduit l'impact délétère du lait.
- Aucune association pour la consommation des autres produits laitiers (fromage, beurre, yaourt, crème).

Résultats similaires pour des analyses avec des délais plus longs (décalage de 10, 15, 20 ans) ou ajustées sur des symptômes prodromaux (constipation, dépression).

European Journal of Epidemiology https://doi.org/10.1007/s10654-024-01152-2

NEURO-EPIDEMIOLOGY

Consumption of milk and other dairy products and incidence of Parkinson's disease: a prospective cohort study in French women

Mariem Hajji-Louati^{1,6} · Berta Portugal¹ · Emmanuelle Correia¹ · Nasser Laouali¹ · Pei-Chen Lee^{1,2} · Fanny Artaud¹ · Emmanuel Roze^{3,4,5} · Francesca Romana Mancini¹ · Alexis Elbaz¹

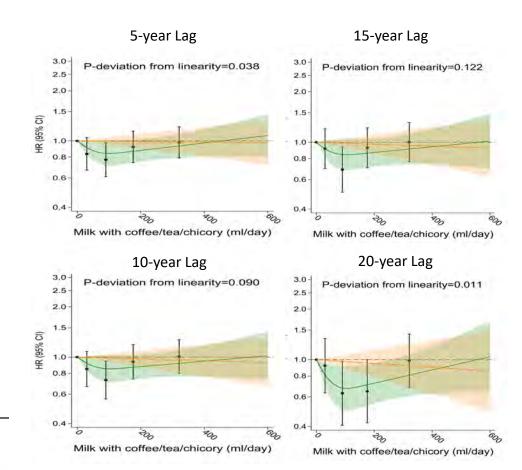
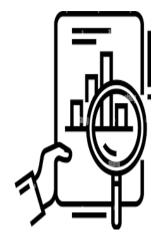



Figure 2: Consommation de lait ajouté au café, thé ou chicorée et incidence de la maladie de Parkinson chez les femmes de la cohorte E3N

Adhésion au régime méditerranéen et incidence de la maladie de Parkinson

- Le régime méditerranéen : l'un des régimes alimentaires les plus sains
 - consommation d'aliments d'origine végétale, tels que les fruits, les légumes, les légumineuses et les céréales, ainsi que l'huile d'olive.

- Une forte adhésion au régime méditerranéen est associée à une diminution du risque de MP pour les malades les plus jeunes.
- Rôle bénéfique de la consommation de légumineuses et des aliments riches en acides gras polyinsaturés comme les poissons gras et les noix.

Figure 2: La pyramide alimentaire du régime méditerranéen

Discussion

- La consommation de lait pur est associée à une incidence accrue de la MP:
 - même lorsque cette consommation a été évaluée longtemps avant l'apparition de la maladie (>10 ans)
 - Analyses ajustées sur la constipation/dépression

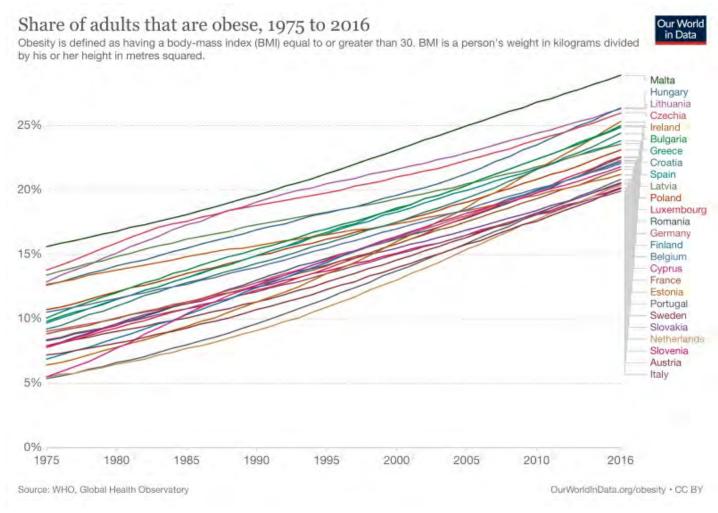
Cette association est cohérente avec une étude de randomisation mendélienne (Domenighetti et al., Mov Dis 2022).

- La relation entre le lait ajouté et la MP pourrait s'expliquer par des effets opposés du lait et de la caféine.
- Aucune association n'a été retrouvée pour les autres produits laitiers (fromage, beurre, yaourt, crème).
- Effet protecteur d'une forte adhésion au régime méditerranéen et de la consommation de légumineuses et d'aliments riches en acides gras polyinsaturés comme les poissons gras et les noix pour la MP, notamment chez les plus jeunes.
- Ces résultats permettent d'envisager des pistes de prévention de la MP chez les personnes à risque.

Contaminants de l'alimentation et obésité

Francesca Romana MANCINI – PhD, HDR, CRCN

Obésité:


- Accumulation anormale ou excessive de tissu adipeux présentant un risque pour la santé.
- $IMC kg/m^2 > 30$
- Un des principaux facteurs de risque des maladies non transmissibles → problème de santé mondial important!

Dans l'UE, le surpoids et l'obésité **réduisent** l'espérance de vie d'environ 3 ans.

Près de **30 % de la population totale est obèse** (~ 2,1 milliards) dans le monde.

Dans **I'UE**, environ 40 % des adultes sont en surpoids et environ **20** % **sont obèses**.

L'obésité

Le taux d'obésité a triplé entre 1975 et 2016.

Les PCBs et les dioxines

De nombreux perturbateurs endocriniens (PE) sont **obésogènes.** Ils peuvent provoquer l'obésité par les mécanismes suivants :

- augmentation du nombre et de la taille des adipocytes;
- altération du système endocrinien responsable :
 - du contrôle du développement du tissu adipeux,
 - des hormones qui régulent l'appétit, la satiété et les préférences alimentaires,
 - > du taux métabolique de base,
 - de l'équilibre énergétique pour favoriser le stockage des calories et la sensibilité à l'insuline et au métabolisme lipidique.

Les dioxines et les polychlorobiphényles (PCB) sont classés comme polluants organiques persistants (POP) et soupçonnés d'agir comme des perturbateurs endocriniens (PE).

DIOXINS & PCBs

DIOXIN-LIKE75 PCDD, 135 PCDF, 12 DL-PCBs

Activation de l'Ahryl Receptor (AhR)

NON-DIOXIN LIKE
197 NDL-PCBs

More

Fat Cells/

Larger

Fat Cells

PPARV

Activation

Obesogens

Obese

Animals/

Humans

Androstane receptor (CAR) et pregnane X receptor (PXR)

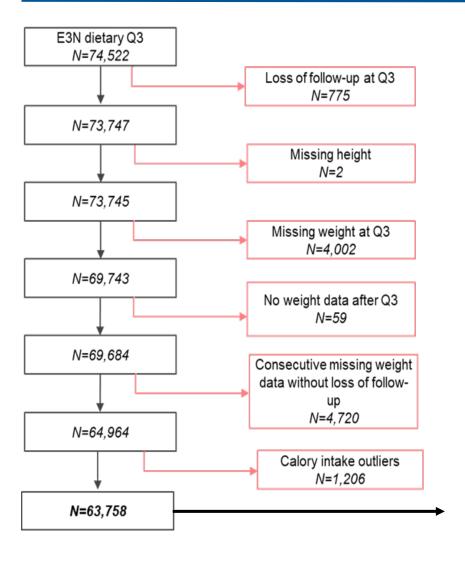
Les PCBs et les dioxines

Les dioxines et les polychlorobiphényles (PCB) sont classés comme polluants organiques persistants (POP) et soupçonnés d'agir comme des perturbateurs endocriniens (PE).

DIOXINS & PCBs

DIOXIN-LIKE75 PCDD, 135 PCDF, 12 DL-PCBs

Activation de l'Ahryl Receptor (AhR)

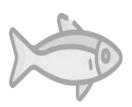

NON-DIOXIN LIKE
197 NDL-PCBs

Androstane receptor (CAR) et pregnane X receptor (PXR)

Objectif: étudier les associations entre l'apport alimentaire de dioxines, de DL-PCB et de NDL-PCB et le risque de prise de poids (+10 kg), de surpoids (IMC>25) et d'obésité (IMC>30) dans la cohorte prospective E3N- Générations.

Population d'étude

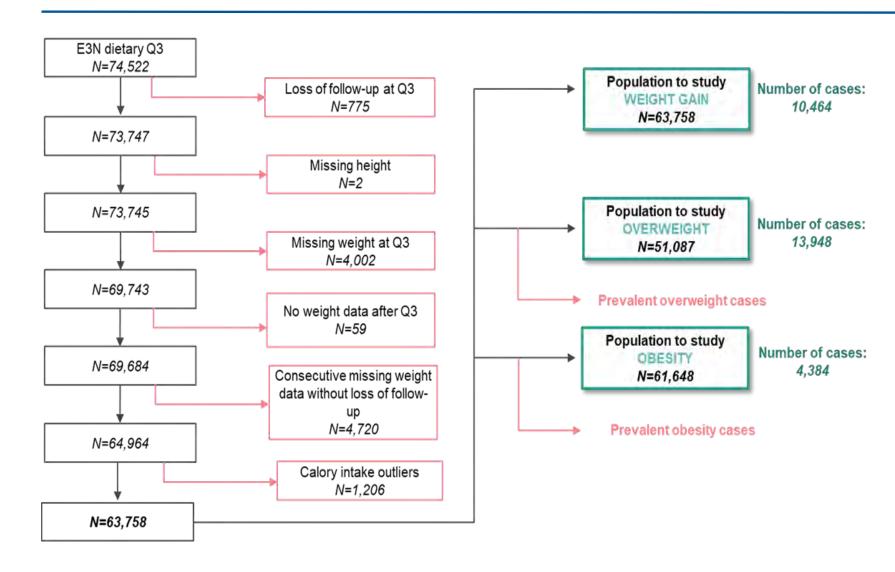
Durée moyenne du **suivi** : 17,7 ans


Âge moyen: 52,9 ans

IMC moyen: 22.9 kg/m²

Apport alimentaire moyen :

NDL-PCB: 151,3 ng/j


Dioxines + DL-PCB : 30,8 pg TEQ/j

Population d'étude

NDL-PCBs et prise de poids, surpoids et obésité

Prise de poids + 10 kg entre 1993-2014			Surpoids		Obésité		
	_	non cas / cas	HR (IC 95%)	non cas / cas	HR (IC 95%)	non cas / cas	HR (IC 95%)
	⊅σ	53 294 / 10 464	1.08 (1.06-1.10)	37 141 / 13 946	1.04 (1.03-1.06)	57 264 / 4 384	1.09 (1.06-1.12)
			<0.01		<0.01		<0.01
NDL PCB	Q1	13 634 / 2 305	Ref	9 617 / 3 154	Ref	14 485 / 927	Ref
	Q2	13 453 / 2 487	1.06 (1.00-1.12)	9 450 / 3 322	1.03 (0.98-1.08)	14 420 / 992	1.05 (0.96-1.16)
	Q3	13 217 / 2 723	1.15 (1.08-1.22)	9 234 / 3 538	1.06 (1-10.11)	14 302 / 1110	1.12 (1.02-1.23)
	Q4	12 990 / 2 949	1.22 (1.15-1.30)	8 840 / 3 932	1.13 (1.08-1.2)	14 057 / 1355	1.26 (1.14-1.38)
			<0.01		<0.01		<0.01

Modèle 1 ajusté pour l'âge comme échelle de temps, l'activité physique, le tabagisme, la génération de naissance, le niveau d'éducation, la forme du corps à la puberté, l'apport calorique hors graisses et alcool, l'apport en graisses et en alcool et la stratification en quintiles d'IMC au départ

 σ = 69.7 ng/jour

NDL-PCBs et prise de poids, surpoids et obésité

Obésité	Modèle 1		+ ajustement sur le score d'adéquation PNNS	+ ajustement sur la consommation journalière de poisson (g/jour)	
	non cas / cas	HR (IC 95%)	HR (IC 95%)	HR (IC 95%)	
	7 σ 53 294 / 10 464	1.09 (1.06-1.12)	1,09 (1,05-1,12)	1,05 (1,00-1,11)	
		<0.001	<0.001	0.06	
NDL PCB	Q1 13 634 / 2 305	Ref	Ref	Ref	
	Q2 13 453 / 2 487	1.05 (0.96-1.16)	1,06 (0,96-1,16)	1,03 (0,94-1,13)	
	Q3 13 217 / 2 723	1.12 (1.02-1.23)	1,13 (1,02-1,24)	1,07 (0,97-1,19)	
	Q4 12 990 / 2 949	1.26 (1.14-1.38) < 0.001	1,26 (1,14-1,39) <0.001	1,14 (1-1,29) 0,038	

Modèle 1 ajusté pour l'âge comme échelle de temps, l'activité physique, le tabagisme, la génération de naissance, le niveau d'éducation, la forme du corps à la puberté, l'apport calorique hors graisses et alcool, l'apport en graisses et en alcool et la stratification en quintiles d'IMC au départ

 σ = 69.7 ng/jour

Dioxines et DL-PCBs et prise de poids, surpoids et obésité

Obésité		Modèle 1		+ ajustement sur le score d'adéquation PNNS	+ ajustement sur la consommation journalière de poisson (g/jour)
		non cas / cas	HR (IC 95%)	HR (IC 95%)	HR (IC 95%)
	⊅σ	57 264 / 4 384	1.08 (1.04-1.12)	1.01 (0.97-1.05)	1.02 (0.97-1.07)
			<0.001	0.582	0.371
Dioxines	Q1	14 471 / 941	Ref	Ref	Ref
+ DL PCB	Q2	14 401 / 1 011	1.01 (0.92-1.12)	0.99 (0.9-1.08)	0.98 (0.89-1.08)
	Q3	14 292 / 1 120	1.14 (1.03-1.26)	1.08 (0.97-1.19)	1.07 (0.96-1.19)
	Q4	14 100 / 1 312	1.21 (1.08-1.35)	1.06 (0.94-1.18)	1.07 (0.94-1.21)
		·	<0.001	0.212	0.171

Modèle 1 ajusté pour l'âge comme échelle de temps, l'activité physique, le tabagisme, la génération de naissance, le niveau d'éducation, la forme du corps à la puberté, l'apport calorique hors graisses et alcool, l'apport en graisses et en alcool et la stratification en quintiles d'IMC au départ

 σ = 11.9 pg TEQ/jour

NDL-PCBs et prise de poids, surpoids et obésité

Conclusions:

- ✓ Cette étude suggère une association positive et linéaire entre les apports alimentaires en NDL-PCBs et le risque de prise de poids, de surpoids et d'obésité chez les femmes adultes.
- Ces résultats étaient globalement stables lors de la réalisation d'analyses de sensibilité.
- ✓ D'autres études sont nécessaires pour confirmer ces résultats dans d'autres populations et pour mieux comprendre les mécanismes biologiques sous-jacents à cette association.

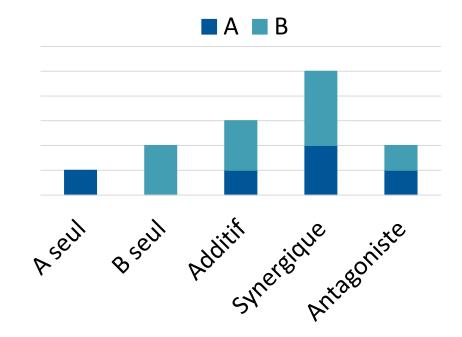
Evidence of a positive association between dietary exposure to polychlorinated biphenyl (PCB) and weight gain among women in the E3N prospective cohort

Luna Chetrit¹, Pauline Frenoy¹, Fanny Artaud¹, Chloé Marques¹, Xuan Ren¹, Gianluca Severi^{1,2}, Francesca Romana Mancini1*

Currently under revision

Mélanges de contaminants et mortalité

Chloé Marques, Post-doctorante



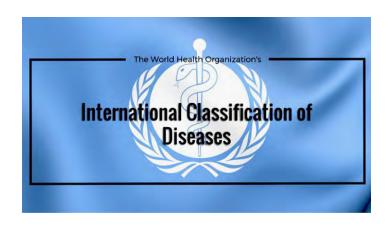
Contexte

- La plupart des études épidémiologiques analysent l'association entre l'exposition alimentaire à un seul contaminant et la santé
- Les aliments contiennent de nombreux contaminants qui peuvent interagir entre eux

Identifier les mélanges de contaminants auxquels les femmes E3N-G1 étaient le plus souvent exposées par le biais de l'alimentation

Etudier l'association entre ces mélanges et le risque de mortalité

Mortalité dans E3N-G1



CépiDc Centre d'épidémiologie sur les causes médicales de décès

1993

Mortalité toute-cause

6 441

Mortalité par maladies cardiovasculaires

896

Mortalité par cancer

3 473

Mortalité par cancer du sein

953

Mortalité par cancer du poumon

364

Mortalité par cancer colorectal

317

Identification des mélanges de contaminants

SNMU : méthode de réduction de dimensions

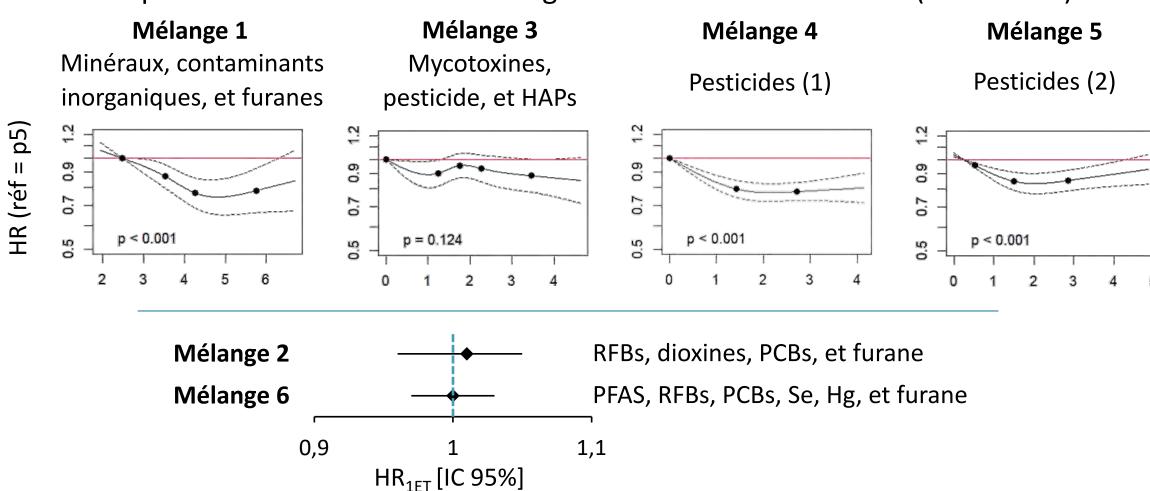
197 contaminants inclus

6 mélanges retenus

81 % de la variance expliquée

Description des mélanges

	Mélange 1	Mélange 2	Mélange 3	Mélange 4	Mélange 5	Mélange 6
Principaux contaminants	Minéraux, contaminants inorganiques, et furanes	RFBs, dioxines, PCBs, et furane	Mycotoxines, pesticide, et HAPs	Pesticides (1)	Pesticides (2)	PFAS, RFBs, PCBs, Se, Hg, et furane
Nombre de contaminants	28	52	25	23	46	21
Groupe d'aliments le plus corrélé	*	MILK				10


^{*} Le mélange 1 était corrélé à de nombreux groupes d'aliments

RFBs : retardateurs de flamme bromés; PCBs : polychlorobiphényles; HAPs : hydrocarbures aromatiques polycycliques; PFAS : substances per- et polyfluoroalkylées

Résultats

Exposition alimentaire aux mélanges et mortalité toute-cause (N = 72 585)

Discussion

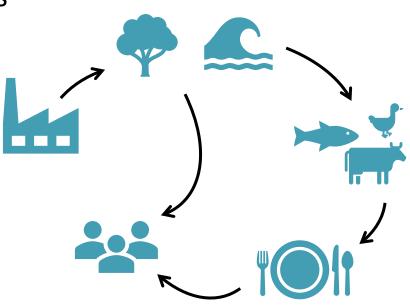
- Pas d'association ou association inverse entre l'exposition alimentaire à des mélanges de contaminants et le risque de mortalité toute-cause, par cancer et par maladies cardiovasculaires
- Possible confusion résiduelle de l'alimentation et du mode de vie associé
- Nombre de contaminants étudiés : Inclure plus de contaminants ? Ou réduire le nombre de contaminants ?

Challenges of studying the dietary exposure to chemical mixtures: Example of the association with mortality risk in the E3N French prospective cohort

Chloé Marques ^a, Pauline Frenoy ^a, Thibault Fiolet ^a, Amélie Crépet ^b, Gianluca Severi ^{a,c}, Francesca Romana Mancini ^{a,*}

Biomarqueurs d'exposition aux contaminants et stress oxydatif

Pauline Frénoy, Biostatisticienne & Doctorante



Les polluants organiques persistants (POPs)

- Produits chimiques organiques ayant des propriétés communes :
 - Persistance (« polluants éternels »)
 - Mobilité
 - Bioaccumulation
 - Toxicité → Stress oxydatif?
- Exposition principalement via l'alimentation
- Différentes familles chimiques
 - Pesticides organochlorés (POC), Polychlorobiphényles (PCB),
 Polybromodiphényléthers (PBDE), Substances per- et polyfluoroalkylées (PFAS)...

Le stress oxydatif

- Déséquilibre entre la production d'espèces réactives de l'oxygène (ROS) et la capacité antioxydante des cellules
- ROS : Composés instables et très réactifs
- Si leur concentration augmente, des enzymes antioxydantes sont produites pour les neutraliser

Liens entre POPs et stress oxydatif

- Etudes toxicologiques :
 - Les POPs entrainent la production de ROS et augmentent l'activité de certaines enzymes antioxydantes

- Etudes épidémiologiques :
 - Résultats hétérogènes en ce qui concerne les liens entre POPs et enzymes antioxydantes

Objectif: Etudier les associations entre les biomarqueurs d'un mélange de POPs (POC, PCB, PBDE et PFAS) et les biomarqueurs de stress oxydatif (trois enzymes antioxydantes) parmi un échantillon de femmes E3N

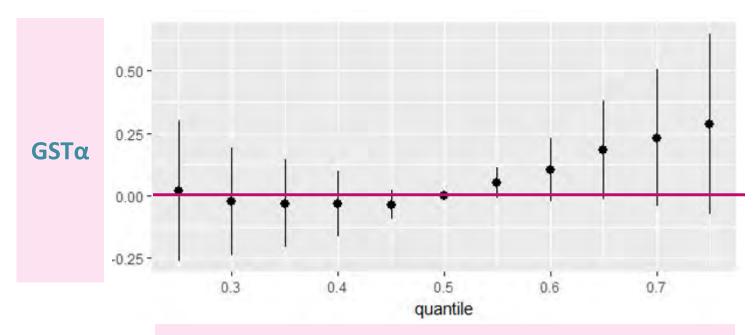
Les défis de l'analyse statistique



- Plusieurs difficultés à prendre en compte lors de la modélisation statistique :
 - Corrélations
 - Interactions : effets synergiques ou antagonistes (« effets cocktails »)
 - Effets non linéaires
- → Méthodes statistiques adaptées
- « Bayesian Kernel Machine Regression » (BKMR): Méthode bayésienne adaptée aux expositions très corrélées et permettant de modéliser des relations non linéaires et non-additives (interactions)

Mesure des biomarqueurs

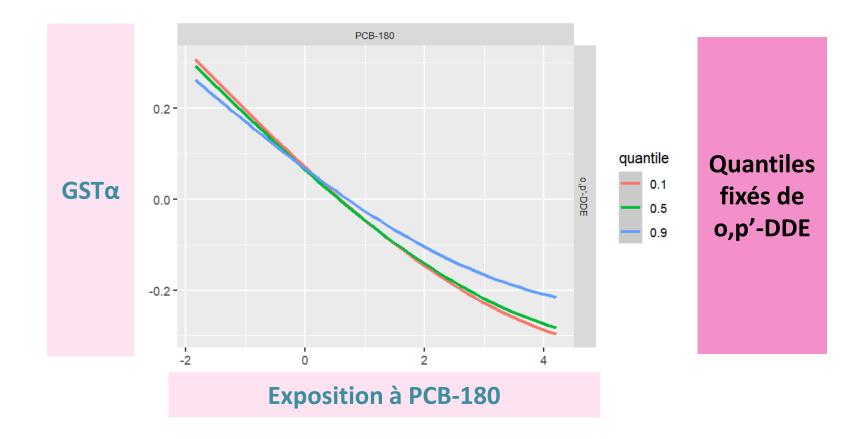
- **467 femmes**, 1994-1999
- 41 POPs quantifiés dans au moins 75% des échantillons:
 - 12 PFAS, 11 POC, 14 PCB, 4 PBDE
- **3 enzymes antioxydantes**: SOD1, SOD2, GSTα



Résultats du modèle BKMR

Effets cumulés :

 Variations des enzymes
 antioxydantes lorsque
 l'exposition simultanée
 aux 41 POPs augmente


Exposition simultanée aux 41 POPs (quantiles)

Résultats du modèle BKMR

Interactions: Variations de la forme de la relation entre un POP donné et une enzyme antioxydante, lorsque l'exposition à un autre POP varie

Discussion & Conclusion

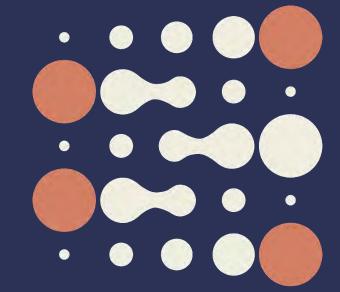
- Résultats riches mais complexes à interpréter
- Ce travail...
 - Intègre de multiples POPs en utilisant une méthode « souple » adaptée à la complexité du contexte
 - → Mais les biomarqueurs de POPs et de stress oxydatif sont mesurés à un instant donné → Reflet des effets à court termes ou à long termes ?
- → A confirmer par des études toxicologiques et épidémiologiques de plus grandes taille et avec des mesures répétées dans le temps

Merci pour votre attention,

Merci aux nombreuses personnes ayant contribué à ce travail

Article soumis:

Associations between blood levels of persistent organic pollutants and oxidative stress biomarkers among women in France in the 90's


Pauline Frenoy^{1*}, German Cano-Sancho², Jean-Philippe Antignac², Philippe Marchand², Chloé Marques¹, Xuan Ren¹, Vittorio Perduca^{4,1}, Francesca Romana Mancini¹

Aliments ultra-transformés et cancers dans la cohorte EPIC

Ultra-processed foods & cancer risk in the EPIC cohort

Inge Huybrechts

Nutrition & Metabolism Branch (NME)

International Agency for Research on Cancer

Indicateurs alimentaires dans EPIC avec un accent sur les produits transformés

- > Classification NOVA dans EPIC
- > Validation par des biomarqueurs
- >Associations avec des maladies
- > Résumé et perspectives

Indicateurs alimentaires dans EPIC avec un accent sur les produits transformés

- >Classification NOVA dans EPIC
- **►** Validation par des biomarqueurs
- > Associations avec des maladies
- > Résumé et perspectives

Aliments ultra-transformés

Formulations d'aliments et de boissons dérivées industriellement de composés chimiques qui, au-delà des substances d'usage culinaire courant (telles que le sel, le sucre, les huiles et les graisses), comprennent des substances dérivées des aliments mais non utilisées dans les préparations culinaires, telles que les graisses hydrogénées, les amidons modifiés, ainsi que les arômes, les colorants, les émulsifiants et d'autres additifs cosmétiques.

Basé sur la classification NOVA. Monteiro C. et al, 2019

Classification NOVA de la transformation des aliments

<u>La classification des aliments</u> → permet de classer les aliments en fonction de l'objectif de la <u>transformation alimentaire</u>, plutôt qu'en termes de nutriments.

Groupe 1 - Aliments non transformés ou peu transformés

Groupe 2 - Ingrédients culinaires transformés

Groupe 3 - Aliments transformés

Monteiro et al., 2019; Ultra-processed foods: what they are and how to identify them. PHN

Monteiro et al., 2016; The UN Decade of Nutrition, the NOVA food classification and the trouble with ultraprocessing. PHN

Groupe 4 - Produits alimentaires et boissons ultra-transformés

European Prospective Investigation into Cancer (EPIC)

- Cohorte multicentrique, ~500 000 volontaires (~70% de femmes)
- Recrutement entre 1991 et 2000 dans 10 pays de l'UE (Grèce exclue)
- Agés de plus de 35 ans au moment du recrutement (médiane=51)
- Recrutement dans la population générale (à l'exception de la France et d'Utrecht)
- Moyenne de 14,1 années de suivi
- Questionnaires sur l'alimentation (spécifiques à chaque pays)
- Questionnaires sur le mode de vie
- Résultats en matière de santé (via les registres du cancer, les dossiers d'assurance maladie, etc.)

Source: http://epic.iarc.fr

Classification NOVA de la transformation des aliments

<u>La classification des aliments</u> → permet de classer les aliments en fonction de l'objectif de la <u>transformation alimentaire</u>, plutôt qu'en termes de nutriments.

Groupe 1 - Aliments non transformés ou peu transformés

Groupe 2 - Ingrédients culinaires transformés

Groupe 3 - Aliments transformés

Monteiro et al., 2019; Ultra-processed foods: what they are and how to identify them. PHN

Monteiro et al., 2016; The UN Decade of Nutrition, the NOVA food classification and the trouble with ultraprocessing. PHN

Groupe 4 - Produits alimentaires et boissons ultra-transformés

Sous-groups - NOVA

1	Aliments non transformés ou peu transformés
101	Eau
102	Fruit
103	Lait et yaourt nature
104	Céréales, grains et farine fabriqués à partir de ces aliments
105	Pommes de terre
106	Pâtes
107	Haricots, lentilles et pois chiches
108	Legumes
109	Les fruits à coque et les graines
110	Oeufs
111	La volaille
112	Viande rouge
113	Poisson
114	Fruits de mer
115	Champignons
116	Café/thé
117	Jus de fruits frais et smoothies
118	Jus de fruits UHT ou pasteurisés
119	Desserts - faits maison
120	Soupe (non commerciale)
121	Sauce maison, sucrée ou salée

2	Ingrédients culinaires transformés
201	Sucre de table
202	Huile végétale
203	Graisses animales
204	Autres ingrédients culinaires transformés
205	Sel de table

3	Aliments transformés
301	Fromage
302	Viande salée, fumée ou en conserve sans additifs
303	Poisson salé, fumé ou en conserve
304	Pain transformé
305	Légumes et autres aliments d'origine végétale conservés
306	Légumineuses conservées
307	Fruits conservés
308	Noix salées et pâtes à tartiner à base de noix
309	Bière et vin
310	Lait concentré, yaourt nature sucré

4	Aliments ultra-transformés
01	Pains ultra-transformés
02	Pâtisseries, brioches et gâteaux
103	Biscuits
04	Céréales pour petit-déjeuner
105	Glaces, ice-pops et yaourts glacés
06	Desserts industriels
107	En-cas salés emballés
08	Produits à base de pommes de terre
109	Pâte à pizza et à focaccia
10	Pâtes (farcies)
11	Soupes instantanées et en conserve
12	Produit de substitution laitière
13	Fromages fondus
14	Sauces et assaisonnements - également sous forme de poudre/déshydratée/condensée
15	Pâtes à tartiner et produits à base de légumes
17	Boissons non alcoolisées
18	Desserts et boissons lactés (versions ultra-transformées)
19	Boissons aux fruits, thé glacé et autres boissons sucrées
20	Boissons poids sec
21	Boissons alcoolisées distillées et autres boissons alcoolisées
22	Edulcorants artificiels
23	Encas sucrés
24	Viandes transformées (bœuf, porc et poisson)
25	Les substituts de viande
26	Poudres et boissons nutritionnelles
27	Margarine
28	Plats cuisinés

429 Versions sans alcool de boissons alcoolisées

430 Légumes et légumineuses en milieu ultra-transformé

Stratégies et défis rencontrés

Codage des éléments du questionnaire alimentaire EPIC (liste alimentaire simplifiée)

Décisions prises au niveau national (spécifiques à chaque pays)

Les aliments et recettes commerciaux sont codés en tant que tels, en utilisant un seul code (NON décomposé).

Les aliments et recettes **maison** sont **décomposés**, \rightarrow puis chaque ingrédient doit être codé.

Les éléments **génériques**, tels que « Légumes n.s. », sont **décomposés** pour mieux correspondre aux codes NOVA ①, puis chaque ingrédient doit être codé.

Manque de précision des noms et descriptions des items du FFQ

Changement des habitudes alimentaires □→ Création de 3 scénarios :

- Le moins transformé (fait maison par exemple)
- Le plus probable
- Le plus transformé (similaire à ce qui existe en 2018)

Différentes modalités : quantités absolues en g/jour & en kcal/jour- pourcentages incluant l'alcool en % de g/jour & % de kcal/jour - pourcentages hors alcool en % de g/jour & % de kcal/jour

Indicateurs alimentaires dans EPIC avec un accent sur les produits transformés

- > Classification NOVA dans EPIC
- **→** Validation par des biomarqueurs
- > Associations avec des maladies
- > Résumé et perspectives

Associations des niveaux d'acide élaïdique dans le plasma avec l'apport quotidien en % g et % Kcal des groupes NOVA

	Corrélation de Spearman		
	scénario plus probable		
	R Valeur P		
Exprimé en % g/jour, y compris la consommation d'alcool	jour, y compris la consommation d'alcool		
Aliments non ou peu transformés –G1	0.17	<.0001	
Ingrédients culinaires transformés -G2	-0.46	<.0001	
Aliments transformés -G3	-0.44	<.0001	
Aliments ultra-transformés-G4	0.37 <.0001		
Exprimé en % kcal/jour, y compris la consommation d'alcool			
Aliments non ou peu transformés –G1	-0.07	<.0001	
Ingrédients culinaires transformés -G2	-0.49	<.0001	
Aliments transformés -G3	-0.34 <.0001		
Aliments ultra-transformés-G4	0.54	<.0001	

Associations entre le sulfate de O-méthyl syringol urinaire et l'apport quotidien en % g et Kcal des groupes NOVA

	Corrélation d	e Spearman
	scénario plu	s probable
	R	Valeur P
Exprimé en % g/jour, y compris la consommation d'alcool		
Aliments non ou peu transformés –G1	-0.07	0.185
Ingrédients culinaires transformés -G2	-0.41	0.000
Aliments transformés -G3	-0.07 0.148	
Aliments ultra-transformés-G4	0.30 <.0001	
Exprimé en % kcal/jour, y compris la consommation d'alcool		
Aliments non ou peu transformés –G1	-0.38	0.000
Ingrédients culinaires transformés -G2	-0.42	0.000
Aliments transformés -G3	0.07	0.147
Aliments ultra-transformés-G4	0.43	<.0001

Indicateurs alimentaires dans EPIC avec un accent sur les produits transformés

- > Classification NOVA dans EPIC
- > Validation par des biomarqueurs
- > Associations avec des maladies
- > Résumé et perspectives

Transformation des aliments et risque de cancer - Substitution

		Substitution	Substitution
Cancer		de N3 par N1	de N4 par N1
	Modèle	HR (95%CI)	HR (95%CI)
Tous	1	0.96 (0.95; 0.97)	0.99 (0.97; 1.00)
lous	2	0.98 (0.97; 1.00)	0.99 (0.97; 1.00)
Tête et cou	1	0.80 (0.75; 0.85)	0.80 (0.74; 0.88)
Tele el Cou	2	0.98 (0.90; 1.08)	0.78 (0.71; 0.85)
(Esophago SCC	1	0.57 (0.51; 0.64)	1.08 (0.86; 1.36)
Œsophage SCC	2	0.75 (0.63; 0.90)	1.07 (0.84; 1.38)
Côlon	1	0.88 (0.85; 0.92)	0.93 (0.89; 0.97)
Colon	2	0.88 (0.84; 0.94)	0.95 (0.90; 1.00)
Rectal	1	0.90 (0.85; 0.94)	0.98 (0.92; 1.04)
Necial	2	0.97 (0.90; 1.05)	1.03 (0.95; 1.10)
нсс	1	0.77 (0.68; 0.87)	0.73 (0.62; 0.86)
	2	0.82 (0.68; 0.99)	0.84 (0.70; 1.00)
Sein (post) ⁸	1	0.93 (0.90; 0.97)	0.98 (0.95; 1.02)
Com (poot)	2	0.98 (0.92; 1.03)	1.00 (0.96; 1.04)

Effet du remplacement de 10% d'aliments transformés et ultratransformés par 10% d'aliments peu transformés sur l'incidence du cancer

Modèle 1 ajusté pour les principaux facteurs de confusion

Modèle 2 ajusté en fonction de l'apport et de la qualité de l'alimentation, de la consommation d'alcool et des facteurs liés à la taille corporelle

(Kliemann et al. Lancet Planet Health. 2023)

Aliments ultra-transformés et risque de cancer de la tête et du cou et de l'œsophage

Une augmentation de 10 % de la proportion de grammes d'aliments ultra-transformés dans le régime alimentaire a été associée à une augmentation du risque de cancer de la tête et du cou et d'adénocarcinome de l'œsophage.

Modèle	Exposition	Résultats	N total	N événements	HR	95% CI	Valeur P
1	Augmentation de 10 g/j de l'apport en UPF	Adénocarcinome de l'œsophage	450,111	215	1.26	1.07-1.49	0.005
2	Augmentation de 10 g/j de l'apport en UPF	Adénocarcinome de l'œsophage	450,111	215	1.25	1.06-1.48	0.007
1	Augmentation de 10 g/j de l'apport en UPF	Carcinome épidermoïde de l'œsophage	450,111	194	0.76	0.60-0.96	0.021
2	Augmentation de 10 g/j de l'apport en UPF	Carcinome épidermoïde de l'œsophage	450,111	194	0.75	0.59-0.95	0.015
1	Augmentation de 10 g/j de l'apport en UPF	Cancer de la tête et du cou	450,111	814	1.17	1.07-1.28	<0.001
2	Augmentation de 10 g/j de l'apport en UPF	Cancer de la tête et du cou	450,111	814	1.16	1.07-1.27	<0.001

Aliments transformés et risque de cancer de la tête et du cou et de l'œsophage

De même, une augmentation de 10 % de la proportion d'aliments transformés était associée à un risque plus élevé de HNC (cancer du pharynx HR=1.23, 95%Cl 1.10-1.37; cancer du larynx HR=1.23, 95%Cl 1.17-1.45) et de carcinome épidermoïde de l'œsophage.

Modèle	Exposition	Résultats	N total	N événements	HR	95% CI	Valeur P
1	Augmentation de 10 % par jour de la consommation d'aliments transformés	Adénocarcinome de l'œsophage	450,111	215	0.98	0.84-1.14	0.778
2	Augmentation de 10 % par jour de la consommation d'aliments transformés	Adénocarcinome de l'œsophage	450,111	215	0.96	0.83-1.12	0.631
1	Augmentation de 10 % par jour de la consommation d'aliments transformés	Carcinome épidermoïde de l'œsophage	450,111	194	1.89	1.69-2.11	<0.001
2	Augmentation de 10 % par jour de la consommation d'aliments transformés	Carcinome épidermoïde de l'œsophage	450,111	194	1.77	1.58-1.98	<0.001
1	Augmentation de 10 % par jour de la consommation d'aliments transformés	Cancer de la tête et du cou	450,111	814	1.34	1.26-1.42	<0.001
2	Augmentation de 10 % par jour de la consommation d'aliments transformés	Cancer de la tête et du cou	450,111	814	1.26	1.19-1.34	<0.001

Aliments peu transformé et risque de cancer de la tête et du cou et de l'œsophage

En revanche, une augmentation de 10 % de la proportion d'aliments non transformés/minimalement transformés était associée à un risque plus faible de cancer de la tête et du cou (cancer du pharynx HR=0,77, 95%Cl 0,70-0,85; cancer du larynx HR=0,77, 95%Cl 0,71-0,85; cancer de la bouche HR=0,82, 95%Cl 0,74-0,91) et de carcinome épidermoïde oesophaegal.

Modèle	Exposition	Résultats	N total	N événement s	HR	95% CI	Valeur P
1	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Adénocarcinome de l'œsophage	450,111	215	0.90	0.79-1.02	0.085
2	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Adénocarcinome de l'œsophage	450,111	215	0.91	0.81-1.03	0.151
1	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Carcinome épidermoïde de l'œsophage	450,111	194	0.62	0.56-0.70	<0.001
2	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Carcinome épidermoïde de l'œsophage	450,111	194	0.66	0.59-0.74	<0.001
1	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Cancer de la tête et du cou	450,111	814	0.73	0.69-0.78	<0.001
2	Augmentation de 10 % par jour de la consommation d'aliments non transformés/peu transformés	Cancer de la tête et du cou	450,111	814	0.77	0.73-0.82	<0.001

ORIGINAL CONTRIBUTION

Ultra-processed foods, adiposity and risk of head and neck cancer and oesophageal adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition study: a mediation analysis

Fernanda Morales-Berstein 1,2 • Carine Biessy · Vivian Viallon · Ana Goncalves-Soares 1,2 · Corinne Casagrande ·

La proportion médiée par le rapport taille/hanche (RTH) n'était que de 15 % (IC 95 % 8-72 %, p = 0,03) dans l'association avec le cancer de la tête et du cou.

L'IMC n'a joué qu'un rôle médiateur de 13 % (IC à 95 % 6-53 %, p = 0,04) dans l'association entre la consommation des AUT et le risque de l'adénocarcinome de l'œsophage.

Dans notre analyse de médiation, l'adiposité (c'est-à-dire l'IMC et le RTH) n'a joué un rôle de médiateur que pour une petite partie des associations positives entre la consommation de AUT et les cancer de la tête et du cou.

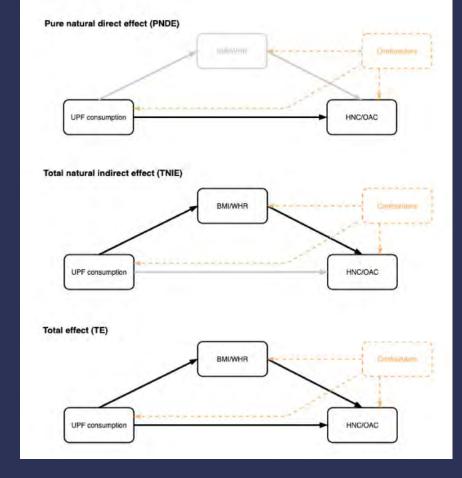


Fig. 1 Diagramme d'analyse de médiation de la décomposition bidirectionnelle contrefactuelle de l'effet total de la consommation de AUT sur le risque de cancer de la tête et du cou et d'adénocarcinome de l'œsophage.

Indicateurs alimentaires dans EPIC avec un accent sur les produits transformés

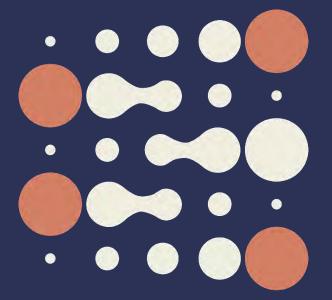
- > Classification NOVA dans EPIC
- > Validation par des biomarqueurs
- > Associations avec des maladies
- **≻**Résumé et perspectives

Résumé et perspectives

- Cette étude fournit des preuves indiquant que le remplacement des produits alimentaires transformés et ultra-transformés par des aliments peu transformés peut réduire le risque de cancer global, de la tête et du cou, de l'œsophage, du cancer colorectal, du cancer du foie et du cancer du sein post-ménopausique.
- Dans notre analyse de médiation, l'adiposité (c'est-à-dire l'IMC et le RTH) n'a joué un rôle de médiateur que dans une faible proportion des associations positives entre la consommation des aliments ultra-transformé et les cancers de la tête et du cou et l'adénocarcinome de l'œsophage, ce qui suggère que d'autres voies sont impliquées (par exemple, les additifs et les contaminants de la transformation des aliments).
- Les recommandations, qui encouragent une plus grande consommation d'aliments frais et peu transformés tout en réduisant la consommation d'aliments (ultra-)transformés, pourraient être intégrées dans les stratégies de santé publique de prévention du cancer.
- De nouvelles recherches sont nécessaires pour confirmer ces associations et comprendre les mécanismes biologiques sous-jacents.

Aliments ultra-transformés et cancers dans la cohorte EPIC

Ultra-processed foods & cancer risk in the EPIC cohort


With thanks to Genevieve Nicolas, Corinne Casagrande, Renata Bertazzi Levy, and Fernanda Rauber, for their efforts in classifying the EPIC foods according to the Nova classification

&

International Agency for Research on Cancer

To all EPIC collaborators, funders and participants

